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Long-run Causal Order:  A Preliminary Investigation 

 

Abstract 

Graphical causal modeling has successfully provided algorithms for the empirical determination 

the contemporaneous causal order of structural vector autoregressions, but little attention has 

been paid to the long-run causal order of the cointegrated vector autoregression (CVAR) model.  

The main ideas of graphical causal modeling are reviewed.  A distinction is drawn between 

ordinary variables that are nonstationary only when they have nonstationary causes and 

fundamental trends – i.e., variables whose own dynamics generate nonstationary behavior.  The 

nature and limitations of causal relationships among fundamental trends is explored.  It is then 

argued that the nonstationary behavior of CVAR models should typically be attributed to latent 

fundamental trends, so that their long-run dynamics arise from the causal structure connecting 

these fundamental trends to the ordinary variables and connecting the ordinary variables to each 

other.  The connection between the graphical causal structure of the CVAR and weak 

exogeneity in different subsets of the CVAR variables is explored and some preliminary 

suggestions are offered on how to infer the underlying causal structure of the data-generating 

process through an exhaustive examination of weak exogeneity in irreducibly cointegrated 

subsets of the CVAR variables. 

Keywords:  graphical causal modeling, causal search, cointegrated vector autoregression 

(CVAR), weak exogeneity, irreducible cointegrating relations 

JEL Classification: C32, C51, C18 
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Long-run Causal Order:  A Preliminary Investigation 
 

 
In the long run, we are all dead. 

                                                                                                     JOHN MAYNARD KEYNES 

 

In the long run, we are simply in another short run. 
                                    VARIOUSLY ATTRIBUTED 

 

Contrary to Keynes’ famous dictum in the long run we are all dead,  

the long run is with us every day of our lives 
                                                                                                                           WALT ROSTOW 

 

 

 

1. The Problem of Causal Order in the CVAR 

Katarina Juselius’s and Søren Johansen’s most famous contributions to econometrics, studied 

and applied in detail in her textbook (Juselius 2006) and in his monograph (Johansen 1995) and 

in a large number of journal articles, concern the cointegrated vector autoregression (CVAR).  

The CVAR is a vector autoregression (VAR) in which special attention is given to the 

nonstationary components, or what we might consider to be the long-run properties, of the time 

series.   

 There are two significant traditions in time-series econometrics.  The Cowles 

Commission in the 1940s and ’50s pioneered structural econometrics that conceived of the 

econometric problem as one of articulating and measuring economic mechanisms (Koopmans 

1950; Hood and Koopmans 1953; see Morgan 1990 for a history).  The articulation of 

mechanisms was generally referred to as the identification problem.  The major resource for 

securing identification was a priori economic theory.  Early on, structural and causal articulation 

were regarded as synonymous, although subsequently causal language fell from favor (Hoover 

2004).  In his contribution to the 1953 Cowles volume, Herbert Simon (1953) drew on the 

language of experiments (actual or metaphorical) to suggest that an identified system of dynamic 

equations provided a map of the space of interventions in the economy.1  Simon demonstrated an 

isomorphism between a structurally identified model and a causally well-ordered model. 

 A second econometric tradition, grounded more in time-series statistics, focused on 

process rather than structure (e.g., see Wold 1960 or Granger 1969).  The VAR was introduced 

into macroeconometrics as part of a critical response to the Cowles Commission approach.  

Christopher Sims (1980, p. 1), building on earlier criticisms of Liu (1960) and others, attacked 

structural econometric models for making use of “incredible” identifying restrictions and offered 

the vector autoregression – a system of reduced-form equations in which all variables are 

endogenous – as a workable alternative to identified structural models.  It rapidly became clear 

that reduced-form VARs were inadequate to counterfactual policy analysis – perhaps the most 

important use of macroeconometric models (Cooley and LeRoy 1985, Sims 1982, 1986).  The 

structural VAR (SVAR), which imposes a causal order on the contemporaneous relationships 

among the endogenous variables was seen to provide the minimum restrictions needed to 

                                                 
1 See Hoover (2001, ch. 3).  In appealing to an experimental metaphor, Simon followed in the footsteps of Haavelmo 

(1944), a foundational figure for Cowles Commission Econometrics (see Hoover and Juselius 2015; Hoover 2014). 
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identify independent shocks, which were taken to be the drivers of a dynamic system, and policy 

analysis was largely reduced to working out the impulse responses to those shocks (see Duarte 

and Hoover 2012 and Hoover and Jordá 2001).   

 While the problem that had motivated Sims in the first place, the incredibility of the 

identifying restrictions, had been minimized, it was not eliminated, and the question, how we are 

to know the correct contemporaneous causal order, remains an open one.  In truth, economic 

theory rarely provides a clear or decisive answer.  In practice in most, though not all cases, 

SVARs were identified by assuming certain triangular causal orderings of the contemporaneous 

variables.  Since all such causal orders are just-identified, they have the same likelihood 

function, and, thus, there is no empirical basis for choosing among them, so long as “empirical” 

is restricted to likelihood information.  When the underlying data-generating processes (DGPs) 

are over-identified, information about conditional independencies among the variables provides 

information that can be used, in some cases, to distinguish among possible causal orders.  This 

approach has been developed with great sophistication – mainly for non-time-series data – in the 

so-called graphical causality or Bayes-net literature (Spirtes, Glymour, and Scheines 2000; Pearl 

2009).  Swanson and Granger (1997) first applied a simple graphical causal search algorithm to 

the problem of determining the contemporaneous causal structure of an SVAR.  Subsequently, 

more sophisticated algorithms have been applied and shown to be effective in a wide range of 

circumstances (Demiralp and Hoover 2003; Demiralp, Hoover, and Perez 2008).  

 Meanwhile, time-series econometrics discovered the importance of nonstationary 

processes and the concept of cointegration (Engle and Granger 1987).  In light of these 

developments, the SVAR was reformulated into the CVAR.  The issues that concern us, can be 

explicated in a standard CVAR with one lag and no deterministic components and variables 

integrated of degree one (notated I(1)): 

(1)     tttt εxxx   11 , 

where x = [x1, x2, . . . xp], ,  and   are p  p matrices of parameters, t ~ INp(0, ) is p-element 

vector of normal residuals, and t subscripts indicate time .  The residuals contain both 

unobserved causes, which we shall call shocks, and various sorts of error.  In general, the 

individual elements of  are not independent, so that  is not a diagonal matrix. 

 What Johansen and Juselius call a structural CVAR is derived from equation (1): 

(2)     tttt uxβaxAxA   1110  

where ut = A0t ~ INp(0, ); A0 is a p  p with ones on the main diagonal such that 00 AΩAΣ 

and  is diagonal; and A1 = A0 (Juselius 2006, equation (12.2), p. 208; cf. equation (15.5), p. 

276; Johansen 1995, pp. 78-79).  If the variables in x are cointegrated (i.e., if a linear 

combination of nonstationary variables is itself stationary), then  has reduced rank (r) and may 

be written as  =  , where  and  are p  r matrices, and a = A0. 

 Equation (2) is said to be structural because 
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1. the matrix A0, which is not in general unique, provided that it has p  (p – 1)/2 zero 

restrictions, identifies the causal ordering of the contemporaneous variables in the sense of 

Simon (1953; see also Hoover 2001, ch. 3);2  

2. the long-run parameters of  and  can be recovered, provided that at least r  (r – 1) 

restrictions are imposed on  (note, however, that in general  and  are not unique). 

3. the elements of u (in contrast to those of ) are independent of each other and may, therefore, 

be taken to be the very shocks that are entangled in , which is reflected in the fact that  is 

diagonal.3 

 Equation (2) is structural in, at best, a limited sense.  One aspect of this claim can be 

grasped by comparing the practical importance of contemporaneous identification to the practical 

irrelevance of long-run identification.  As noted A0 is not unique.  Each admissible choice of A0 

defines a distinct causal order and, in general, though all just-identified orders imply the same 

likelihood function, each will define a different set of shocks and different impulse-response 

functions.  The matrices  and  are also in general not unique, but their product must equal , 

and it is only  that matters to the impulse-response functions.  Thus, the choice among the 

admissible just-identified s and s has no empirical consequences – at best, the choice is simply 

a matter of economic aesthetics.   

 There is a second reason to question the structural status of (2).  If the rank of  is r < p, 

then the variables in x are driven by q = p – r common stochastic trends.  It is possible that some 

of the common trends are embedded in the observable variables, but, generally, the common 

trends will be latent variables, which may, perhaps, be backed out of the observed variables 

(Juselius 2006, ch. 14).  In that case, the essential elements of the structure, which are the causal 

drivers of its long-run behavior are not explicitly represented in (2), and (2) can, at best be a 

partial structural model 

 These two issues – the causal impotence of different choices of long-run identification 

and the latency of the principal causal drivers – are related.  Together they form the major hurdle 

to applying graph-theoretic (so-called “Bayes-net”) search algorithms to discover long-run causal 

structure.4  The goal of this paper is to provide a coherent account of the causal order of a CVAR 

and to make some preliminary suggestions about how the methods of graphical causal search in 

conjunction with cointegration analysis might can aid in the empirical discovery of its long-run, 

as well as the short-run, causal structure.   

 

2. Graph-Theoretic Causal Order 

It will be helpful to review selectively some aspects of graphical causal analysis.5   

 

                                                 
2 Since we are concerned principally about causal structure, we will focus on generic identification, setting to one 

side empirical and economic identification, in Johansen and Juselius’s (1994) sense of these terms (see also 

Juselius’s 2006, p. 208). 
3 The elements of u include both shock and error.  Our focus here is on the shocks; in practice, we cannot ignore the 

error. 
4 We prefer the adjective “graph-theoretic” to “Bayes-net,” as the search methods do not require a Bayesian 

approach to statistics. 
5 For compact treatments, see Cooper (1999) and Demiralp and Hoover (2003).  
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 2.1 GRAPHS AND CAUSAL STRUCTURE
6 

In Simon’s (1953) account, a structural model is a system of equations representing mechanisms 

in the world.7  Although the account can be generalized considerably (see Hoover 2001, chapter 

3), it will do for our purposes to restrict our attention to linear equations and to treat each 

equation as the representation for the causal mechanism determining its left-hand-side variable 

(the effect) in terms of right-hand-side variables (the direct causes).  The coefficients on the 

right-hand-side variables are parameters, defined here to be variation-free variables that 

represent the loci of interventions in the system.  That is, each parameter Pj, j = 1, 2, . . . n, is 

defined as a set of possible values Pj = {pjk}, where each pjk may be an element in a discrete or 

continuous set.  So, for example, a parameter might correspond to a switch or dial and its value 

to the particular setting of the switch or dial, and changing its value to an intervention in the 

system.  The condition that parameters be variation-free means that any one parameter taking a 

particular value does not restrict the others from taking any value within their range (Hendry 

1995, p. 163).  We can define a parameterization (pi) as the selection of one value for each 

parameter.  Variation-freeness means, then, that the set of possible parameterizations of model is 

an element of the Cartesian product of the parameters:  pi  P1  P2  . . .  Pn.  A policy action 

that sets a parameter in, for example, a central-bank reaction function, is an example of an 

intervention.  But parameters are not restricted to interventions by humans.  Simon likens 

interventions to experiments and counts Nature among the experimenters.  Indirect causal 

relations can be read off the system of equations from its recursive structure.  Thus, if a variable 

(A) can be determined from a subset of equations of the system and another variable (B) can be 

determined only from a larger set of equations of which the first subset is an indispensable part, 

then A (directly or indirectly) causes B. 

 A system of equations that determines the values of a set of variables can be rewritten in 

various ways by taking linear combinations of its equations.  If the true causal order corresponds 

to a particular way of writing the equations in which the coefficients on the right-hand-side 

variables are parameters as we have defined them, then any other linear combination does not 

represent the true causal order, as its coefficients are combinations (involving products, sums, 

and differences) of the parameters.  These coefficients are not, therefore, variation-free, but 

involve cross-coefficient restrictions, and so are not themselves parameters.  The problem of 

determining causal order, essentially the same as the classic identification problem, is to find a 

representation of the variables such that the interventions actually possible in the real world are 

represented as the parameters of the model.  This is equivalent to finding a representation in 

which the coefficients on the right-hand-side variables are true parameters.  Experiments (i.e., 

either actual human interventions in a real-world system or so-called “natural experiments”) can 

provide the necessary evidence.  Graph-theoretic search algorithms provide a method that can 

frequently derive the necessary evidence from passive observations.   

 To fix ideas, let us consider the causal relationships among a cross-section of variables 

with no time dimension.  For example, in equation (1), consider a situation in which  and  are 

identically zero.  In that case, the causal structure among the variables in x can be represented by 

the matrix A0 in (2), where a non-zero element corresponds to the variable indexed by the row to 

the variable indexed by the column.  In order to keep to our restriction to recursive systems, we 

                                                 
6 This section borrows elements from Phiromswad and Hoover (2013), sections 2.1 and 2.2. 
7 Hoover (2001, chs. 2 and 3) provides a detailed account of Simon’s approach and of it generalization to nonlinear 

systems, including ones with cross-equation restrictions among the parameters. 
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must consider only systems that are identified – that is, that impose at least p  (p – 1)/2 zero 

restrictions (in addition to the restrictions imposed by the requirement that  be diagonal) – and 

that are lower triangular or can be made lower triangular simply by reordering the variables in x.    

 The vector x is p  1, A0 is a p  p matrix of structural parameters aij with ones on the 

main diagonal, and  a conformable vector of independent random shocks distributed N(0, ), 

where  is diagonal.  Let the true DGP be a system of structural equations: 

(3)      uxA 0 . 

 Premultiplying (1) by 
1

0


A yields the reduced form: 

(4)     εuAxAAx   1

00

1

0 , 

where  ~ N(0, ) and  is not in general diagonal.   

 The identification problem is the problem of working backwards from the observed 

probability model embodied in the reduced form (4) to the structural model (3).  It is a problem 

because there are many matrices P-1, such that E(P (P) = .  Premultiplying (2) by P yields 

(5)      wPεuPAPx 
1

0 , 

where w ~ N(0, ) with  diagonal.8  If (3) is the true DGP, the elements of P ( A) are not 

structural parameters and the elements of w are not structural shocks, but pseudo-shocks that are 

complicated functions of the true shocks and the true structural parameters (aijs).  Yet, because 

both (3) and (5) share the same reduced form (4), they cannot be distinguished from each other 

merely on their fit to observable data.  

 After normalization, the matrix P introduces p(p – 1) additional parameters.  Thus, any 

identification scheme must impose p(p – 1) restrictions on the structural form.  The fact that the 

covariance matrices of the shocks ( and ) are diagonal imposes p(p – 1)/2 restrictions, so that 

identification requires that the coefficient matrices (A0 or P) have a further p(p – 1)/2 

restrictions.  If there are exactly p(p – 1)/2 in each case, then the models are just identified and 

their likelihood functions are identical; so there is no choosing among them on the basis of the 

likelihood function.  However, if there are more than p(p – 1)/2 restrictions, then the likelihood 

functions may be different and the overidentifying restrictions are testable.  Causal search 

algorithms exploit those differences. 

 Equations (3) and (5) can be represented in distinct directed graphs.  The elements of x 

form the nodes or vertices of the graph.  An edge connects a pair of vertices.  Edges come in 

several forms; for the moment, we consider just three:  null or no-edge, indicating an absence of 

causal connection; an unidirected edge (), indicating an undetermined causal direction; a 

directed edge, indicating an asymmetric causal influence ( or ).  If aij ≠ 0, then a directed 

edge runs from variable j to variable i.  A graph in which there are no undirected edges is called 

a directed graph. 

 Consider, for example, the system of equations (3) in which  

                                                 
8 If P is lower triangular, then the transformation corresponds to a Choleski ordering familiar from structural VAR 

analysis. 
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This system can be represented as in Figure 1.  Each random shock in (1) could be treated as a 

latent variable and represented explicitly as connected by an edge directed into the dependent 

variable for its equation.  To reduce clutter we take the random shocks as implied in the fact that 

the system is stochastic and would represent them graphically only if there were a special 

purpose in doing so.   

 It is sometimes useful to refer to the connections among the variables without reference 

to their directions.  Every graph that connects the same variables is said to have the same 

skeleton.  It is also useful to distinguish between a parent, the source of an arrow, and a child, the 

variable into which an arrow points.  D and E are parents of C; C is a child of D and E.  A 

variable that is the parent, grandparent, great grandparent, etc. of another variable is its ancestor.  

F is the ancestor of C.  B is not an ancestor of E, because, even though B is connected to C and C 

to E, the arrows do not line up, so that causal influence is not transferred.  By convention, every 

variable is regarded as its own ancestor.  Variables that are connected by edges are said to lie on 

a path.  When the edges align (e.g., on the path from F to C, then they lie on a directed path; 

whereas when the edges do not align (e.g., on the path B to E), they lie on an undirected path. 

 A graph is acyclical (which corresponds to what econometricians refer to as recursive 

systems) when descendants of any variable are not also ancestors of that same variable.  Thus, 

Figure 1 is a directed acyclical graph (or DAG); while A  B  C  A is a directed cyclical 

graph.  The graph A  B  A is a very tight cyclical graph – namely, a simultaneous 

relationship between A and B, perhaps better represented as A ⇄ B.  Here, we will restrict 

ourselves to directed acyclical graphs – a typical implicit assumption in the VAR literature – 

even while recognizing that economists frequently invoke simultaneity.   

 

 2.2 GRAPHS AND CONDITIONAL INDEPENDENCE 

The key idea in graph-theoretic (or Bayes-net) accounts of causal structure is the mapping 

between the causal graph and the probability distribution described in the true DGP and its 

reduced form.  The mapping is based on Reichenbach’s (1956, p. 156) principle of the common 

cause:  if any two variables, A and B, are probabilistically dependent, then either A causes B  

(A  B) or B causes A or (A  B) or they have a common cause (A  C  B).  The principle of 

the common cause is generalized as the causal Markov condition:   

Definition 1.  Let G be a causal graph relating a set of variables V with a probability 

distribution P.  Let W be a subset of V.  G and P satisfy the causal Markov condition if, and 
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only if, for every W in V, W, conditional on its parents, is independent of every set of 

variables that does not contain its descendants.  (Spirtes et al. 2000, p. 29; see also Pearl 

2009, p. 30). 

 Causal search is based in part on the systematic application of the causal Markov 

condition.  Consider three simple cases:  i) A  C  B; ii) A  C  B; and A  C  B.  In 

each case, A and B are probabilistically dependent, but are independent conditional on C.  The 

variable C in case i) is referred to as a common cause of A and B.  In cases ii) and iii), C is an 

intermediate variable.  In all three cases, C is said to screen off A from B. 

 Causal structure can in some cases induce conditional dependence between variables that 

are unconditionally independent or independent conditional on their parents.  In Figure 1, D and 

E are unconditionally independent; but conditioning on C, their common effect, renders them 

probabilistically dependent.  For example, let D = measure the dryness of the underbrush; E = 

the presence or absence of lightening; and C = the presence or absence of a forest fire.  D and E 

may be completely independent.  Yet, if we know that the forest caught fire and we know that the 

underbrush was dry, it raises the probability that the lightening was present.  Vertex C in Figure 

1 is called an unshielded collider on the path DCE (or ECD).  It is a “collider” because the 

arrowheads come together at C, and is “unshielded” because there is no direct causal connection 

between C and E.  Vertex C is a shielded collider on the path ACB; the edge  A  B acts as a 

shield in that A and B are probabilistically dependent even without conditioning on the common 

effect.   

 Essentially, the causal Markov condition holds when a graph corresponds to the 

conditional independence relationships in the associated probability distribution.  A graph is said 

to be faithful (by Spirtes et al. 2000, p. 31) or stable (by Pearl 2009, p. 31) if, and only if, there is 

a one-to-one mapping between the relationships of conditional independence implied by the 

causal Markov condition applied to G and those found in P (Spirtes et al. 2000, p. 48).  There are 

well-known circumstances in which faithfulness can fail to obtain (see Sprites et al. 2000, p. 41; 

Pearl 2009, pp. 62-63; Hoover 2001, pp. 45-49, 151-153, 168-169).  Essentially, faithfulness 

fails when the parameters are tuned in such a manner that variables that are in fact causally 

connected are nevertheless conditionally independent.  Although failures of faithfulness can 

arise, they are not generic.  Suppose, for example, that parameters were drawn out of uniform 

random distributions, then parameterizations that would violate faithfulness would typically have 

Lebesgue measure zero. There may be good economic reasons in some cases to expect the tuning 

that produces failures of faithfulness, but it is unlikely to arise by chance; and, in the spirit of 

Reichenbach’s principle of the common cause, we should provide an economic account of how 

the fine tuning arises.9   

 The relationship between a causal graph and the probability distribution of the same 

variables is captured in Pearl’s 

                                                 
9 An example (see Hoover 2001, pp. 168-169):  let A = A, B = A + B, and C = A + B + C, where the Roman 

letters indicate variables, the s indicate mutually independent random error terms, and other Greek letters indicate 

parameters.  Generically, in this system A  C  B.  However, if the parameters happen to fulfill the condition  

 = –/, then the conditional correlations corr(AC|B) = 0 and corr(BC|A) = 0 – that is, there are independence 

relationships that are not encoded in the graph, which is a failure of faithfulness.  While it is unlikely to arise by 

chance, this very special parameterization may occur nonetheless for good economic reasons:  it is the condition that 

would be fulfilled by a policymaker trying to use A optimally to minimize the variance of C.   
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d-separation Theorem.  Let G be a causal graph relating a set of variables V, and let X, Y, and 

Z be distinct subsets of V.  X and Y are d-separated given Z and, thus, probabilistically 

independent conditional on Z if, and only if, there exists no undirected path U between X and 

Y such that i) every collider on U has a descendent in Z, and ii) no other variable on U is in 

Z; otherwise, X and Y are d-connected (Pearl 2009, pp. 16-18; Spirtes et al. 2001, p. 44). 

Some examples of d-separation in Figure 1:   

a) D and E are d-separated conditional on the null set, since there is only one path between them, 

which is blocked by the collider C; they are, therefore, unconditionally independent;  

b) D and E are not d-separated conditional on C, since by clause i) the collider C is a member of 

the conditioning set (recall that a variable is considered to be its own descendant), which 

corresponds to what we already learned – namely, that conditioning on a unshielded collider 

renders unconditionally independent variables conditionally probabilistically dependent;  

c) C and F are d-separated conditional on E, since there are no colliders on the only path between 

them, so that clause i) does not apply, and there are no other variables on the path, so that 

clause ii) does not apply, which corresponds once again to what we have already learned – 

namely, that an intermediate variable on a directed path screens off probabilistic dependence, 

provided that there are no alternate paths. 

The d-separation theorem allows us to read from a causal graph which conditional independence 

relationships are encoded in the likelihood function. 

 Different graphs may imply the same set of conditional independence relationships, so 

that the corresponding probability distribution defines a class of observationally equivalent 

causal structures.  This class may have only one element or it may have many.  The class of 

admissible orderings is characterized by the   

Observational Equivalence Theorem.  Any probability distribution that can be faithfully 

represented in an acyclical graph can equally well be represented by any other acyclical 

graph that has the same skeleton and the same unshielded colliders (Pearl 2009, p. 19, 

Theorem 1.2.8; see also Sprites et al. 2000, ch. 4).   

The theorem implies that there may be causal structures in which some causal edges are reversed 

and yet all of the unshielded colliders preserved.  For example, in Figure 1, reversing the edge  

F  E leaves the likelihood unaffected, so that information about the probability distribution of 

the variables cannot by itself provide a basis for inferring the causal order of that edge in the true 

DGP.  A just-identified model has no unshielded colliders.  It follows immediately that all just-

identified models of the same variables are observationally equivalent.  Consequently, all 

Choleski orderings of the contemporaneous variables in an SVAR are observationally equivalent. 

 

 2.3 CAUSAL INFERENCE IN CAUSALLY SUFFICIENT SETS 

The existence of observationally equivalent causal structures implies that the graphs of such 

structures may not be uniquely recoverable from information in embedded in the likelihood 

function.  The best case occurs when the data are complete in the special sense of being causally 

sufficient:  
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Definition 2.  A set of variables is causally sufficient if, and only if, any variable that is excluded 

from the set directly causes at most one variable within the set (see Spirtes et al. 2000, p. 22).   

Consider a simple example.  Suppose that a DGP includes just three variables,  A  L  B.  The 

complete set of variables is causally sufficient, and the fact that A and B are independent 

conditional on L would allow us to infer A  L  B, although it would not allow us to recover 

the DGP graph.  If only A and B were observed (i.e., L were latent) and we wrongly assumed that 

they formed a causally sufficient pair, then we would, incorrectly, find that they were not 

independent and would treat them as directly connected, A  B.  Notice that causal sufficiency 

implies that shock terms, which are unobserved, latent random variables must be independent, as 

they may cause at most one of the observed variables.    

 There is a variety of causal search algorithms for causally sufficient acyclical directed 

graphs.10  It is unnecessary to describe them in detail, although a schematic account of two 

popular ones – the PC and SGS algorithms, which differ only in ways that are unimportant for 

our purposes – will help to fix ideas.11  Each consists of three main steps:  1) starting  with a set 

of variables assumed to be causally sufficient and densely connected with undirected edges, test 

all possible conditional independence relations and eliminate edges whenever any pair of 

variables is unconditionally or conditionally independent; 2) identify unshielded colliders (i.e., 

for every triple of variables in which two of the variables are independent conditional on some 

set of variables but not conditionally independent when a particular variable is added to the 

conditioning set) and orient the causal arrows towards this last conditioning variable; and 3) 

apply logical constraints to orient as many additional causal arrows as possible – in particular, 

orient arrows to avoid creating unshielded colliders unsupported by the conditional independence 

tests in step 3) and to avoid creating cycles.   

 Some search algorithms work on other principles or allow cyclical causal orders or latent 

variables.  Search algorithms may also be modified to incorporate a priori knowledge, either by 

insisting on, or forbidding, particular causal connections irrespective of the statistical 

information.  Time structure may, for example, be imposed as a priori knowledge. 

 

 2.4 DISCOVERING CAUSAL STRUCTURE WITH LATENT VARIABLES 

Since a search algorithm cannot work as described in Section 2.3 if there are latent variables that 

violate causal sufficiency, other algorithms have been developed that extract additional 

information from the observed variable set about possible causal patterns between latent and 

non-latent variables (e.g., Spirtes et al.’s (2000, chs. 10 and 11), FCI algorithm).  Some of these 

search algorithms return partial ancestral graphs as their output.  In addition to unidirectional 

arrowheads, partial ancestral graphs can connect observable variables with a bidirectional edge 

() or an edge with an open circle () as one or both of its endpoints.  The bidirectional edge is 

interpreted not, it must be emphasized, as a simultaneous relationship, but rather as indicating 

that two variables have a latent common cause.  Thus, A  B is interpreted to mean  

                                                 
10 See Cooper (1999), Spirtes et al. (2000, chs. 5 and 6), and Pearl (2009), ch. 2.  The Tetrad software package 

implements Spirtes et al.’s (2000) algorithms2, as well as additional algorithms available on Carnegie-Mellon 

University’s Tetrad Project website:  http://www.phil.cmu.edu/projects/tetrad/. 
11 The first is named for the first initials of its creators:  Peter Spirtes, and Clark Glymour; the second for initials the 

surnames of its creators:  Spirtes, Glymour, and (Richard) Scheines. 
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A  L B, where L is an unobserved latent variable.  The open circle is interpreted as either an 

arrowhead or as a blank endpoint.  Thus,  represents that the data are consistent with a DGP 

in which either  or  is the true causal edge. 

 

3. The CVAR as a Nearly Decomposable System 

 3.1 NEAR DECOMPOSABILITY IN NONSTATIONARY SYSTEMS 

It is well known in the CVAR literature, that there is a substantial statistical independence 

between x, reflecting short-run or stationary properties of the variables and the lagged levels of 

x, reflecting the long-run or nonstationary behavior (Juselius 2006, p. 208).  The independence 

appears to be closely related to Herbert Simon’s (1996, ch. 8) analysis of hierarchies of complex 

systems based on the notion of near decomposability.   

 A system is decomposable in Simon’s account when some parts are tightly related to one 

another so that they form a unit, and the unit interacts with other units only as a whole.  

Decomposability is rare, yet near decomposability is more common.  A system for Simon is 

nearly decomposable when  

(1) . . . the short-run behavior of the component subsystems is approximately independent 

of the short-run behavior of the other components; [and] (2) in the long run the behavior of 

any one of the components depends in only an aggregate way on the behavior of the other 

components. [Simon 1996, p. 198; see also Boumans 2005, ch. 4 and Hoover 2015, and, 

for formal treatments, Simon and Ando 1961 and Simon and Iwasaki 1988.] 

Simon’s idea is that even when systems are densely causally connected, some linkages are strong 

and/or fast-acting, while others are weak and/or slow-acting (see also Simon and Rescher 1966).  

The variables that are connected by strong/fast linkages act as units that can be analyzed 

independently and, subsequently, can be analyzed in relationship to similar units.   

 To take an economic example, on a quarter-to-quarter or year-to-year basis, the level of 

employment in an economy is dominated by a complex interaction among relatively quickly 

adjusting factors, such as wage rates, interest rates, private and government expenditure.  Yet, on 

a century-to-century basis, the level of employment is dominated by the slowly changing level of 

overall population, which probably has little to do with the detailed factors that govern 

employment in the short run, though it may well have to do with the also relatively slowly 

changing level of technology.  Similarly, the rates of return on various financial assets on a 

minute-to-minute or day-to-day basis are determined mainly by the rapid process of arbitrage in 

financial markets, while the aggregate level of all interest rates on a year-to-year basis is 

determined by the more slowly developing profitability of industry in general. 

 Simon provides no criterion for distinguishing fast and slow adjustment.  Our two 

economic examples, in fact, suggest that it will often be a matter of degree or a matter of how the 

analysis is contextualized.  In the case of simple dynamic processes, the speed of adjustment may 

be captured by the value of the autoregressive parameter.  Simon does not suggest that the 

distinction between fast and slow is sharp.  In the case of processes such as equation (1), a 

natural division point is the difference between stationary and nonstationary processes – i.e., 

between processes with and without unit roots – since there is a sharp distinction between the 

probability models appropriate in each case.  The transition between the two families of 
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probability distributions represents a kind of critical phenomenon familiar in certain physical 

applications (e.g., see Batterman 2001).  There is a sense, then, in which the long-run causal 

structure emerges from the short-run structure at the point of transition between stationary and 

nonstationary processes.  The short-run and long-run causal structures may, in fact, pull in 

opposite directions. 

 The CVAR also illustrates another feature of near decomposability – temporal 

aggregation.  Short-run dynamics involve all the variables in the system, while, in the long-run, 

groups of variables are dominated by a fewer number of common trends.  This explains 

cointegrating relationships are robust to widening the data set and recommends a specific-to-

general approach:  once the trends can be characterized, then any new variable is either 

redundant or carries information with respect to a new trend (Juselius 2006, ch. 22; Johansen and 

Juselius 2014).  The minimum number of variables needed to characterize a trend corresponds to 

Davidson’s (1998) irreducible cointegrating vector; but, since any set of variables adequate to 

characterize the trends is as good as any other, irreducible cointegrating relationships will not, in 

general, be unique. 

 The “near” in near decomposability reminds us that the short-run and long-run behaviors 

of the system are not completely disconnected.  The underlying trends must be transmitted to  

variables that would not trend on their own through short-run adjustments.  This is the meaning 

of Rostow’s epigraph “the long-run is with us every day of our lives.”  These short-run 

adjustments ultimately account for the cointegration of the nontrend variables with the trend and 

with each other.  The implication in the context of the CVAR is that a meaningful empirical 

identification of the long-run structure of the nontrend variables, must address the manner in 

which the long-term elements affect short-run behavior.  There are conceivably causal 

relationships directly among trends, but all other causal relationships must be mediated through 

stationary behavior.   

 

 3.2 THE EXISTENCE OF NONSTATIONARY TRENDS 

Although this last point requires further amplification, we must first consider the status of the 

nonstationary trends themselves.  The variables in a system such as equation (1) may all be I(1) 

and cointegrated when some of the eigenvalues of  = 0 and, equivalently, when some of the 

rows of  are linearly dependent, resulting in reduced rank.  These conditions may be fulfilled 

by a precise tuning of the parameters of .  In such a case, despite the fact that the CVAR 

literature refers to the cointegrated variables as being driven by common stochastic trends, there 

are, in fact, no actual trends, in the sense that there are no observed or latent variables that are the 

trends; rather, the trends are virtual only:  they are special (and non-robust) properties of the 

causal systems and not ontologically independent mechanisms distinct from the other variables 

in the system.  We can, of course, express equation (1) in a moving-average form in which each 

variable is determined by a weighted average of q (= p – r) shock processes, where p is the 

number of variables and r is the rank of .  But these shock processes are, in fact, themselves 

simply weighted averages of the shocks to individual variables (see Johansen 1995, chs. 3-4; 

Juselius 2006, chs. 14-15).  In this case, the common-trends representation does not correspond 

to anything in the world, but is simply a convenient repackaging of the information in (1). 

 Such virtual common stochastic trends are not robust in the sense that deviations from the 

precise parameterizations of  that generated them will typically result in a collapse of the 
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cointegration among the variables in x and the disappearance of the common-trends 

representation and, very possibly, result in some of the variables turning out to be I(0) rather than 

I(1).  In this case, we can say that the common trends are not generic.  If we imagine that the 

parameters of  are drawn from continuous uniform distributions, then the common trends are 

not generic in the same way that the failures of faithfulness discussed in Section 2.2 (esp. fn. 10) 

are not generic (cf. Davidson 1998. pp. 90).  As with failures of faithfulness, there may well be 

cases in which virtual trends can be expected to appear for good economic reasons because 

precise tuning of the  parameters.  But absent such specific cases, our concern shall be 

exclusively with generic trends – that is, trends that genuinely exist in the world.  (These issues 

are discussed in detail from a philosophical point of view in Hoover 2015.) 

 When can we say that trends are genuine features of the world?  A trend might be 

observable – that is, there is a variable in the model that corresponds to a mechanism in the 

world that generates I(1) behavior and transmits it to other variables, where this behavior does 

not depend on the parameterization of the other variables in the system.  Some combinations of 

the other variables that are causally connected to these trend variables will be cointegrated 

robustly with respect to reparameterization of other relationships in the system.   

 A trend might be real (i.e., not virtual) and yet be unobservable or unobserved (i.e., 

latent).  To alter the story a little, imagine that there are trends causally connected to the 

variables in x but they are unobserved, latent variables and, so, not included in x.  In that case, in 

general, as in other cases of omitted variables, some of the coefficients on some of the variables 

in x will not be variation-free, but will have dependencies, including cointegrating relations, 

dictated by the omitted causal structure.  The coefficients are not, then, true (structural) 

parameters. 

 How can we distinguish a virtual trend from a genuine unobserved, latent trend?  

Johansen and Juselius (2014) show that when trends are genuine we may obtain essentially the 

same estimates for them from narrower and wider sets of cointegrating variables.  The precise 

values of estimates of the common stochastic trend and the trend shock will be different, but 

asymptotically, as the number of observations becomes large, the estimates from the narrower 

and wider data set will converge.  While for any one set of data we cannot rule out that the 

parameters are perfectly tuned to produce cointegration, it would generally require a different 

tuning to produce the same result in a wider data set.  Thus, the stability of the estimates of the 

trend and its shock across increasingly wider data sets is strong evidence that the trend is, in fact, 

a genuine, ontologically independent, though not directly observed, variable.    

 

 3.3 CAUSAL ORDER IN THE LONG RUN 

  3.3.1 Fundamental Trends 

What exactly is meant by long-run causal order?  Consider a simple structural dynamic system: 

(6)            x

ttttt yyxx    )( 211  

(7)    y

tttt xyy    11 . 

This system can be represented in the causal graph in Figure 2.A.   
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 The long run at time t can be defined to be the counterfactual situation towards which the 

system would be heading if it were subjected to no further shocks (i.e., when 0 

y

nt

x

nt  , for 

all n > 1) and the dynamics are allowed to fully work themselves out, so that the variables are no 

longer changing (i.e., 1  ntnt xx  and 1  ntnt yy  as n  ).  Call these long-run values of the 

variables 

tx and 

ty .  They remain indexed by t, since where the variables will end up depends 

on the point at which we stop shocking the system. 

 Applying these ideas, each of the equations (6) and (7) can be transformed to its long-run 

version by setting all shocks and all differenced variables to zero, and all level variables to their 

common values, and simplifying equation by equation (in order not to disturb the structural 

nature of the equations).  Consider first the case in which || < 1 and || < 1, so that the variables 

are stationary: 

(8)             







1
tx  

(9)     






 tt xy









11
. 

The causal graph of this long-run structure is given in Figure 2.B, which is much less complex 

than that of Figure 2.A.  Also, note that, while x and y (at different lags) cause each other in the 

system (7) and (8) and Figure 2.B, x is a one-way cause of y in the long-run.   

 In the stationary case, the system settles down to fixed values, regardless of initial 

conditions.  In contrast consider a nonstationary case in which  = = 0 and  = 1.  Under this 

parameterization, the long-run system is then 

(10)              tt xx  

(11)             



 tt xy





1
. 

Although equation (10) shows that 

tx  is not caused in the long-run by 

ty , unlike in the 

stationary case, it has its own dynamic, and the value of 

tx changes as time advances, so that we 

can write (10) as  

(10)            tt xx  . 

We take up this point in the next section.   

 The long-term causal relation in (11) is still appropriately represented in Figure 2.B.  It is 

important to note that the equations (10) or (10)and (11) (and, equally, equations (8) and (9)) do 

not represent the reduced-forms or explicitly the values of the variables in the long run any more 

than equations (6) and (7) represent explicitly the value of the variables along the dynamic paths.  

Rather they are the long-run causal structural equations (causes on the right, effects on the left), 

which, of course, can be solved to find the long-run values.  Figure 2.A shows that if we 

intervened in the process governing y (e.g., by changing one of the parameters  or ), it would 

have various dynamic implications for x, as well as for y.  But Figure 2.B and its associated 
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equations (10) and (11) show that, in the long-run, x is ordered recursively ahead of y, so that the 

intervention would not transmit from y to x, once all the dynamics had been worked out.  

 We would not, therefore, in this structural form substitute (10) into (11), to give the 

long-run solution for 

ty , as such a substitution and, in general, taking linear combinations of 

distinct structural equations, as one does in solving for a reduced-form, destroys the 

correspondence between the systems of equations and the causal structure, represented, for 

example, in a causal graph.  We now turn to characterizing the sources of long-run trends, such 

as 

tx and of their causal relationships to each other and to non-trend variables. 

 

 3.4 FUNDAMENTAL TRENDS AND ORDINARY VARIABLES 

The order of integration of time series is not a structural characteristic but the phenomenal 

consequence of the structural characteristics of the data-generating process.  Consider a simple 

I(1) process: 

(12)     ttt xx  1 ,   

where time t = 0, 1, 2, . . .  The process can be expressed in moving-average form: 

(13)     



t

j

jt xx
1

0  , 

where x0 is an initial value.  Similarly, a simple I(2) process 

(14)     ttt xx  1 , 

can be expressed as 

(15)    
 


t

i

i

j

jt txxx
2 2

11 )1(  , 

where  x1 and x1 are initial values. 

 Now, consider a variable y, which is I(1) but has an independent I(1) cause z.  Thus, z is 

described by analogues to (12) and (13): 

(16)     
z

ttt zz  1 ,   

and 

(17)     



t

j

z

jt zz
1

0  . 

And y can be expressed as 

(18)             
y

tttt zyy    11 ,  

where  is a parameter measuring the strength of the causal connection between zt and yt.  

Substituting (17) into (18), yields 
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(19)        
y

t

t

j

z

jtt zyy  












 







1

1

01 . 

The moving-average form of (19) is 

(20)               
 






t

i

i

j

z

j

t

j

y

jt tzyy
2 2

1

2

01 )1(  , 

where y0 and z0 are initial values. 

 Equation (20) shows that the variable y is I(2).  But consider the thought-experiment in 

which 0z

t  for every t, which is the same as the causal connection between z and y having 

been severed.  In that case, y – now driven entirely by its internal dynamic – would be I(1) and 

not I(2).  Looked at as a “dynamic processor,” the structural equation (12) for y is fundamentally 

an I(1) generator.  The variable y becomes I(2) only because the I(1) series z is run through this 

I(1) generator, which raises its natural order of integration by one degree. 

 A key feature is captured in a key distinction between ordinary and own orders of 

integration:  

Definition 3.  The ordinary order of integration of a variable x is the number of times it must be 

differenced to render it stationary – that is, it is the property than we have hitherto indicated 

by saying x is I(n), which says that nx is stationary and n-1x is not.   

 

Indicate the ordinary order of integration for a variable x as I(x), so that “x is I(n)” can also be 

written as I(x) = n. When we use “order of integration” without qualification, we mean the 

ordinary order of integration. 

Definition 4.  The own order of integration of a variable x (indicated by the operator (x)) is the 

order of integration that would result from the structural equation for x, considered 

independently from all other structural equations and setting all variables, except for x, its 

lagged values, and its own shock, to zero.   

Thus, for equations (12) and (16), (x) = (z) = 1 and I(x) = I(z) =1; and for equation (14),  

(x) = 2 and I(x) =2; whereas for (18), the own and ordinary orders of integration diverge, so that 

(y) = 1 and I(y) = 2. 

 It is easy to show that if a variable y has causes z1, z2, . . . zn, the relationship of the 

ordinary to the own order of integration is given by 

(21)    I(y) = (y) + max[I(z1), I(z2), . . . I(zn)]. 

 We can now define explicitly the notions that we used implicitly earlier:  

Definition 5.  An ordinary variable (x) is a variable for which (x) = 0.  

Definition 6.  A nonstationary processor (y) is a variable for which  (y) > 1. 

Definition 7.  A fundamental trend (T) is the nonstationary component of a nonstationary 

processor (y) for which (y) = I(y). 

We can demonstrate:  
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Proposition 1. The nonstationary components of fundamental trends are probabilistically 

independent of each other.   

Proof.  Consider two fundamental trends, x, for which (x) = I(x) = m and y for which  

(y) = I(y) = n.  Assume that they are probabilistically dependent.  By Reichenbach’s 

Principle of the Common Cause, variables are probabilistically dependent if, and only if, 

one is the cause of the other or both are the effects of a common cause.  Consider the case 

in which one is the direct cause of the other:  x  y.  Since y is a nonstationary processor, 

its order of integration should be I(y) = (y) + I(x) = m + n; but that contradicts the 

assumption that (y) = I(y) = n and, therefore that y is a fundamental trend.  It follows, 

then, that not (x  y), which in turn implies that probabilistic dependence cannot be 

induced by a direct causal connection when the effect is a fundamental trend. Consider the 

second case in which x and y have a common cause z:  x  z  y.  If  (z) > 0, a similar 

argument shows that neither x nor y could be a fundamental trend.  And if (z) = 0, then 

the probabilistic dependence induced by z between x and y is confined to the stationary 

components of those variables.  Thus, either we must reject that z is a common causes of x 

and y and, therefore, that x and y are probabilistically dependent or that the probabilistic 

dependence involves the nonstationary components.  We can conclude, therefore, that x 

and y cannot be fundamental trends and have probabilistically dependent nonstationary 

components. 

 When one variable causes another, the fundamental trends of the cause are passed on to 

the effect.  An ordinary variable can be I(1), so long as the largest order of integration of one of 

its causes is I(zj) = 1.  Equation (15) shows that that there could be more than one I(1) cause, 

since the order of integration depends on the maximum order of integration.  Thus, an ordinary 

variable y can be caused by any number of I(1) variables and yet remains I(1).  On the other 

hand, if  (y) = 1 and the maximum ordinary order of integration among its causes were I(zj) =1, 

then I(y) = 2. 

 We can define the element that accounts for the cointegration among variables: 

Definition 8.  A local trend (T) is the linear combination of fundamental trends that constitutes 

the nonstationary component of a variable.   

Since a linear combination can place a weight of zero on one of its constituents, a fundamental 

trend is trivially a linear combination of itself and any other fundamental trends with zero 

weights.  Consequently,  a fundamental trend is also a (degenerate) local trend. 

If two variables are cointegrated, then they share a common local trend. 

 The notion of own order of integration and the distinction between ordinary variables and 

fundamental trends combined with some commonplace empirical observations allows us to say 

some relatively important things about long-term causal structure. 

 Consider the causal relations among variables for which the largest ordinary order of 

integration is I(1).  These variables are typically analyzed as being driven by stochastic trends 

fewer in number than the total number of variables.  In such a system, the following propositions 

are true: 

Proposition 2. The fundamental trends must necessarily be I(1).   
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Proposition 3. Any variable x in the system that is not identical with one of the trends has  

(x) = 0.   

Proposition 4. Fundamental trends can cause only ordinary variables and not other 

fundamental trends.  

Proof:  Any fundamental trend Tj  in the system has the property of being both I(Tj) = 1 and 

(Tj) = 1; but if any such trend had a cause that were I(1), then it would have to be that I(Tj) 

= 2, which is a contradiction. 

 Turning to systems that contain both I(1) and I(2) variables.  In practice, econometricians 

rarely find more than one I(2) variables in a data set.  Restricting ourselves to the case of a single 

I(2) variable:     

Proposition 5. The I(2) variable can cause only ordinary variables and not another fundamental 

trend. 

Proof.  Analogous to the argument for proposition 4:  if it did, it would generate an I(3) 

variable, which ex hypothesi is not in the system.  

Proposition 6. The own-order of integration of the I(2) variable (x) is either (x) = 2, in which 

case, its nonstationary component is a fundamental trend, or (x) = 1 with one or more I(1) 

trends causing it, in which case all the fundamental trends in the system (Tj ) are ( Tj ) = 1. 

 Although these six propositions very likely do not exhaust what can be learned about the 

causal structure of long-run relations from this fundamentally simple analysis, two points are 

striking and, perhaps, somewhat surprising:  first, unlike the case of short-run relationships, 

substantial conclusions about causal order may be inferred from facts about integration without 

any need to appeal to an intransitive conditioning relationship; second, the analysis combined 

with some commonplace empirical observations known to most practitioners of CVAR analysis, 

suggest that the causal structure of the long-run is simpler – there are fewer and less dense causal 

connections among trends than among ordinary variables.12   

 

4. Graphical Analysis of the CVAR 

 4.1. THE CANONICAL CVAR OF A CAUSALLY SUFFICIENT, ACYCLICAL GRAPH 

Consider first the long-term structure of a causally sufficient CVAR with an acyclical causal 

structure in which the fundamental trends are represented explicitly.  In the remainder of the 

paper, we consider only cases for a strong form acyclicality in which we do not permit any 

feedback from one variable to another, even with a time delay.  Thus, we rule out cases such as 

Xt  Yt+1  Xt+2.  Consider only the case in which all variables are I(1) and in which the I(0) 

dynamics have been concentrated out and in which the contemporaneous causal order has been 

imposed: 

(22)            
ttt ΗΨξξ  1
,  

                                                 
12 Note, however, that we have continued to restrict consideration to recursive orderings and not allowed for 

simultaneity or cyclicality.  We conjecture, but do not provide the analysis here, that if both (Th) = 1 and (Tk) = 1 

and the two trends are simultaneous (Th ⇆ Tk) both series will prove to be I(2). 
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where ],[  TXξ ; T is a q  1 vector of fundamental trends; X is a p  1vector of ordinary 

variables, which may be trending (i.e., I(1)), but are not fundamental trends; 

],...,,.,.,.[ ,,1,,1
 tqttptt H  is a (p+q)  1 vector of shocks to ordinary variables (it, t = 1, 2, . . 

., p) and to fundamental trends (jt, j = 1, 2, . . ., q), each of the elements of which is an 

identically independently distributed random variable and ),(~ 0H INt
, where  is diagonal.   

 The system can be partitioned as 

(23)           tt

ttt
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

1

1

,  

where the submatrix of parameters XXΨ is a full rank p  p, while XTΨ  is p  q, TXΨ  is q  p, 

and 
TTΨ  is q  q.   

 Because X is the vector of ordinary variables, XXΨ is full rank and the eigenvalues of  

Ip + XXΨ must be less one in absolute value.  If the variables in T are the actual I(1) 

fundamental trends, as opposed to ordinary variables that serve as the conduits of the 

fundamental trends into the observable system, they must, as shown in Section 3.4, be mutually 

causally independent, requiring TT = 0qq, and strongly exogenous, requiring TX = 0qp 

(Johansen 1995, p. 77; Juselius 2006, p. 263).   

 By analogy with the example in Section 3.3, the long-run causal structure of the ordinary 

variables can be defined as follows:  Let D be the p  p matrix with the values of the main 

diagonal of XXΨ on its main diagonal and zeroes elsewhere.  Then, 

(24)      ttt TΨDXIΨDX XTXX

11 )( .13 

 The  matrix in (22) can be decomposed analogously to the  matrix in (2) such that  

= , where   is (p + q)  r and  is r  (p + q).  The transitional causal structure embedded in 

 that governs the transmission of shocks and ultimately determines the long-run causal 

structure reflected in (24) can be represented in this -decomposition in the following 

canonical way:  variables that are both cointegrated and directly causally connected are 

represented by the individual cointegrating relations expressed in  and the effects of causes are 

indicated by non-zero coefficients in .  To take a concrete example, consider a specific causal 

structure embedded in a CVAR like (22) and represented graphically in Figure 3.  (With causal 

time-series graphs, we suppose that the arrows correspond to a one-period lag between a direct 

cause and its effect.)  Thus, the causally canonical representation of Figure 3 would be given as  

                                                 
13 Again, as noted in Section 3.3 with respect to equations (8) and (9) or (10) and (11), equation (24) is not a reduced 

form or long-run solution; it is the long-run causal structure.  The matrix D-1 is simply a matrix of normalizing 

factors, enforcing the convention that long-run effects are placed on the left-hand side and causes on the right-hand 

side of the equation. 
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The rules governing the translation of the Figure 3 or any graph into the CVAR are 

straightforward:   

  (i) each single-variable direct causal pair or each collider is represented by a cointegrating 

relationship corresponding to a unique row of the  matrix where the value of the 

parameter for the effect is normalized to unity;  

 (ii) there are as many adjustment parameters in  as there are rows in  (at most one per 

row) with the column of each non-zero parameter in  corresponding to the row of 

one of the effects (i.e., corresponding to the row in which that variable is normalized 

to unity) in ;  

(iii) if any variable is a cause, but not an effect with respect to all the other variables, it 

corresponds to a zero row in  (and, thus, is weakly exogenous).   

The  matrix thus tells us which variables are related causally and, therefore, connected by 

edges, and the  matrix (equivalently the normalization of ) tells us which way the arrows 

point for those edges. 

 Except for trivial reorderings of the variables and rescalings, the CVAR (25) uniquely 

represents the causal graph in Figure 3.  Algebraically, however, the matrices  and  are not 

unique.  They can rotated to form other pairs (* and *) such that  = **.  The - 

representation and the **- representation yield the same value of the likelihood function.  The 

problem of causal search is to find empirical information other than the value of the likelihood 

function that would allow us to select the canonical representation as in CVAR (25) that 

corresponds to the graph of the data-generating process.   
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 4.2. TRENDS, COINTEGRATION, AND WEAK EXOGENEITY 

  4.2.1.  Formation and Sharing of Local Trends 

We can think of the causal graph of a system of I(1) variables as representing the channels of 

transmission of these trends.  Each collider corresponds to the creation of a local trend, and the 

causal variables involved in the collider are cointegrated with the effect variable.  The 

transmission of a local trend from one variable to a single other variable also implies the 

cointegration of the cause and the effect.   

 Although causal connections produce cointegration, cointegration itself is not essentially 

a causal notion.  Instead, cointegration results either a) when a local trend is shared by two 

variables or b) whenever the number of variables sharing the same fundamental trends, whether 

or not they share the same local trends (i.e., whether or not they share the fundamental trends in 

the same proportions), exceeds the number of fundamental trends.  Thus, in case b), if there is a 

set of variables each of which is driven by the same q fundamental trends, then any q+1 of them 

will be cointegrated.  A causal connection is, thus, sufficient for the cointegration of the 

complete set of causes with their effect, but it is not necessary.   

Proposition 7.  Causal Cointegration:  If each member of the set of parents of a variable C in a 

causal graph is I(1), then the set of variables consisting of C and its parents, is cointegrated.    

It is convenient to write the fact that a set of variables is cointegrated as CI(Z), where Z is a set 

of variables with two or more members.  Thus, if the variables A and B are cointegrated, we can 

write this as CI({A, B}).  Two terms will prove useful: 

Definition 9.  A cointegrating group is a set of variables in which every pair of variables shares 

the same common local trend – i.e., every pair is cointegrated.   

Definition 10.  A collider group is a set of variables that are cointegrated because they form a 

collider.   

The variables in a cointegration group share a single common local trend; while the variables in 

a collider group generate a new local trend.  The same variable may be part of both a 

cointegration group and a collider group.  Other sets of cointegrating variables may be in neither 

type of group.  Davidson (1998, p. 91) introduces a useful concept, which we define here slightly 

differently that he does: 

Definition 11.  A set of variables is irreducibly cointegrating (notated IC()) if, and only if, it 

does not contain a subset that is itself cointegrated.   

 

  4.2.2.  A State-space Analysis of the CVAR 

It will prove useful to examine the relationship between weak exogeneity and the causal graph.  

Weak exogeneity is not in itself a causal property; rather it is a property related to the manner in 

which a likelihood function can be decomposed into a conditional and marginal probability 

distribution under a given parameterization (Engle, Hendry, and Richard 1983).  Weak 

exogeneity is essentially the condition that guarantees that the parameters of interest can be 

estimated efficiently.  Engle et al. define the term “parameter” differently from the way that we 

have defined it.  In Section 4, we defined it as a structural feature of the DGP; while they define 
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it as a feature of the particular model of the DGP (or some subpart of the DGP), so that a 

parameter in Engle et al.’s sense may, coincide with a parameter in our sense, but, equally, it 

may be a function of parameters in our sense.. To avoid confusion, we will use the term 

“coefficient” to mean parameter in Engle et al.’s sense (see Hoover 2001, pp. 175-177).   

 Given a DGP, the weak exogeneity status of its variables will depend on the model we 

estimate.  So, for example, if (25) were the DGP and we estimated a model with precisely the 

form of the DGP, then FT1 and FT2 would be weakly exogenous in the conditional model  

{A, B, C, D, E}t | [{A, B, C, D, E}t-1, {FT1, FT2}t-1] for the coefficients ij or (ji,  ij), i = 1, 2 . . , 

5, j = 1, 2, . . ., 7.  Our main interest, however, will be in the case in which only a subset of the 

data of the DGP is modeled – leaving other variables latent.  So, for example, we might consider 

data generated by (25), but observe only B, C, and E.  These variables can be modeled in a 

CVAR form, but the coefficients of the model will not in general be the same as those of (25), 

though we could compute them if we knew the DGP.  Still, we can ask the question whether we 

can decompose the likelihood function in a manner that renders some of the variables weakly 

exogenous with respect to the coefficients of a conditional model for the others. 

 We can notate this weak exogeneity using a new symbol  “ ”, which means “is weakly 

exogenous for” and is to be distinguished from “”, which means “directly causes.”  Thus,  

X   Y  can be read as “the variables in the set X are weakly exogenous for the coefficients of a 

CVAR model of Y conditional on X .”  Since our main interest is the particular partition of the 

variables between the conditioned variables (Y ) and the conditioning variable (X ) and since the 

phrase in quotation marks in the last sentence is awkward, we will describe the situation 

indicated by X   Y  as “X is weakly exogenous for Y,” leaving the relativity of the weak 

exogeneity relationship to a particular set of coefficients embedded in a particular model 

implicit.  If we know the causal graph of the DGP, then we can read the various weak exogeneity 

relationships for models of different subsets of variables from information in the causal graph.  

As a result, if we can identify weak exogeneity relationships for different subsets, we may be 

able to work backwards to determine which causal graphs could have generated them, in much 

the same way that graphical search models have typically worked backwards to determine a class 

of graphs consistent with facts of probabilistic independence.14  

 The object of the analysis is to use tests of long-run weak exogeneity in CVARs of the 

form of equation (1) for observable variables only to discover restrictions on allowable causal 

ordering of the underlying DGP (23).  Long-run weak exogeneity corresponds to a zero row in 

the  matrix of the CVAR, so a critical goal is, given a particular DGP, to determine what  

matrix it implies for a CVAR of the subset of observable variables. 

 Fundamental trends are assumed to be latent.  In order to analyze cases in which some 

subsets of ordinary variables could be latent, partition Xt = [X1t, X2t], where the X1t are observed 

and the X2t (are treated as) unobserved.  Then, rather than partitioning  as in (23), partition it as 

                                                 
14 Connecting weak exogeneity and, therefore, efficient estimation to causal order is reminiscent of LeRoy’s (1995) 

approach to causality (cf. Hoover 2001, pp. 170-174).  An importance difference, however, is that LeRoy defines 

causal orderings in terms of efficient estimation, while we seek only the implications of causal orderings defined in 

terms of structural parameterizations for weak exogeneity and tests of weak exogeneity as evidence of what the 

underlying structural relations might be. 
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contains the parameters of the ordinary variables.  Only the parameters in M11 correspond to the 

p1 observed ordinary variables, while the other Mij contain parameters that correspond to the p2 

latent ordinary variables and m latent fundamental trends.  The submatrix 
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contains the parameters in 1C corresponding to the effects of the latent fundamental trends on the 

observed ordinary variables and those in 2C  corresponding to the their effects on the unobserved 

ordinary variables.  We suppose that N = 0, which corresponds to the assumption that Tt are 

strongly exogenous. 

 A state-space representation of CVAR (23) can then be given: 

 

(26)     
11121211111   ttttt εTCXMXMX , 

(27)    
12222212112   ttttt εTCXMXMX , 

(28)         
11   tt ηT , 

 

where t = 0, 1, . . ., n – 1, and T0 = 0 and X0 = 0.  The shocks are partitioned into those affecting 

ordinary variables () and those affecting the latent variables (), with (t, t ) ~ i.i.d. Np+m(0, ) 

and 


















Ω

Ω
Ω

0

0
.  In keeping with the distinction between ordinary variables and 

fundamental trends, we assume that the eigenvalues of (Ip + M) are less than one in absolute 

value, so that the source of the nonstationarity of Xt is the fundamental trends, rather than its own 

dynamics. 

 The matrix C represents the proportions of fundamental trends present in observable 

variables but transmitted to them through latent causal connections and not via causal 

relationships among the observable variables.  Thus, while the non-zero entries of M correspond 

to the edges in a causal graph, C is not given a direct graphical interpretation.  The fundamental 

trends are embedded in T, but the variables included in T should be regarded as local trends, 

which may either be latent fundamental trends directly causing the observed variables or 

ordinary variables that carry some linear combination of fundamental trends and cause the 

observable variables.  Therefore,  > 0 need not be diagonal.   

 Suppose that the DGP graph is described as in system (26)-(28), and we wish to know 

whether any of the observed variables (X1t) are weakly exogenous in a CVAR of the observed 

variables only.  This comes down to the question of whether  in that CVAR has any zero rows.  
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Define C* = [M12  C1] – i.e., as the matrix of the parameters governing the effects of latent 

ordinary variables and fundamental trends on observable ordinary variables.  Let s = rank(C*).  

Johansen’s (2018) Theorem 1 shows that a solution to the system (26)-(28) requires that s = m; 

and, if m < p1, then the observable variables cointegrate, whereas if s = m, they do not.  

Furthermore, if there is a zero row in *

C , then there is a zero row in  corresponding to the same 

variable, imply that the variable is weakly exogenous. 

 

  4.2.3.  Weak Exogeneity and Causal Order 

The state-space representation and Theorem 1 offer a tool for analyzing weak exogeneity for 

subsets of variables in the DGP.  These, in turn, correspond in systematic ways to facts about the 

causal structure of the DGP itself.  Consider some illustrative cases: 

Case 1.  Consider the causal graph in Figure 4 and assume that only the fundamental trends are 

unobserved, then the state-space analysis is given by 
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so that C* = C, s = m = 2 < 3 = p1 = p and  
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 The two zero rows in *

C  imply that A and B are weakly exogenous for C (i.e., {A, B}  C).  

Notice that if the DGP were modified to add an edge between A and B (i.e., either 23  0 or 

32  0), the analysis would be unaffected, since it relies on the C matrix only.   

Case 2.  Unfortunately, the simple mapping between weak exogeneity and causal connection 

suggested by Example 1 does not hold up.  Consider Figure 5, which adds the variable D and 

edges connecting to other variables in Figure 4.  Here there two fundamental trends, but three 

variables are parents in a collider at C.  The analysis proceeds just as in Case 1 with the state-

space formulation (omitting M as irrelevant) given by 
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 where the stars indicate a non-zero value that must be chosen to conform to constraints 

implied by non-zero values of the C matrix.  There is no loss in this open specification since it 

is a matter of indifference which of the non-unique *

C we obtain, as each will have the same 

zero rows and it is only the existence or non-existence of zero rows that matter for 

determining weak exogeneity.  
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 The variables A, B, C, D are cointegrated (CI({A, B, C, D})); but, so is each three-member 

subset of these variables, implying not IC({A, B, C, D}).  This is a robust finding:  the parents 

in a collider are weakly exogenous only when the colliding set is irreducibly cointegrated.   

Case 3. It is tempting to think that we might consider an irreducible subset of the variables in 

Figure 5, such as {A, B, C} and find the same weak exogeneity relations as we did in Figure 

4.  That, however, does not work.  In analyzing the subset, we are effectively treating D as an 

unobservable variable. The state-space representation for this reduced system gives   
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 In this case, s = 3 > m and C* is full rank, so that 0C  , implying that none of the variables 

is weakly exogenous.  In treating, D as unobservable, removes it from the graph while, at the 

same time, not eliminating the fact that it provides a conduit from the fundamental trends to C 

that is distinct from the observable conduits, A and B.  It is as if the graph of Figure 5 has been 

transformed into Figure 6, where the dashed arrow indicates an causal connection between 

FT2 and C, mediated by D in the DGP but not observable in the CVAR of the subset  

{A, B, C}. 

Case 4. In Case 3, weak exogeneity failed to obtain, even though the causal connections were 

genuine.  It can also happen that weak exogeneity does obtain, even when causal connections 

are missing.  Consider Figure 7.  Although the graph shows not (A  C) and not (B  D) and 

not (B  E), although B directly causes E.  Using the same state-space methods, however,  

we can show that {A, B}  {C, D, E}.  And, looking at subsets of variables {A, B}  D.  

Thus, {A, B, D} have the same apparent pattern of weak exogeneity as found for {A, B, C}in 

Case 1 (Figure 4); yet these variables do not form a collider group in Figure 7.  Again, we 

have a failure of irreducible cointegration:  CI({A, B, D}), but also CI({A, D}).   

Case 5.  Weak exogeneity may fail to track direct cause.  Consider a causal chain :   

FT   C.  Suppose A  C but also that B  C and {A, B, C} form a cointegration 

group, then B  C and not ( CSimilarly, if CI({A, B, C, D}) and {A, D}  C and  

{B, D}  C, but {A, B} is a cointegration group with A  B, then {B,C,D} form a collider 

group (i.e., B  C  D) but {A,C,D} does not form a collider group (i.e., not (A  C  D).  

In addition to weak exogeneity and irreducible cointegration, a direct cause must be adjacent 

to its effect.  One lesson is that, if every member of the same cointegration group are 

interchangeable as one of the potential parents in a collider group, then any one of them that is 

weakly exogenous for the other member cannot be the direct cause.  By similar reasoning, if 

members of the same cointegration group are interchangeable as the potential child in a 

collider group, then the one that is weakly exogenous for the others is the only one that can be 

the actual direct effect of the parents. 

 These cases show us how to read weak exogeneity off a causal graph.  There are two 

cases:  

1. Within a set of variables that form a cointegration group, a particular variable is weakly 

exogenous for the group if, and only if, it the sole source of the local trend that cointegrates 

the group. 
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2. The parents in any set of variables that form a collider group in which two or more local trends 

are combined are weakly exogenous for the child in the collider group, provided that the 

number of variables in the group is fewer than 1 + the number of fundamental trends carried 

by those variables.  Similarly, if such a collider exists in the graph, then in any set that 

replaces one or more weakly exogenous parents with a variable in the same cointegration 

group as that parent, provided the variable is itself weakly exogenous for the parent, will also 

be weakly exogenous for the child.  And any variable that is weakly exogenous for the child 

either as a parent or as a member of the same cointegration group that replaces the parent will 

be weakly exogenous for a variable that replaces the child from a cointegration group that 

includes the child.  (Thus, in Figure 3, {FT1, FT2}  B, but in the set that replaces B with D, 

which are both in the same cointegration group, {FT1, FT2}  D.  And, in Figure 7, in the 

collider {A, C, E}, {A, C}  E; but in the set in which B replaces C (both in the same collider 

group), {A, B}  E.)   

 The inferential lessons of Cases 1-4, can be summarized in three rules, consistent with 

visual reading of the graph : 

Rule 1.  If A  B, then not B  A. 

Rule 1 simply says that causation cannot run against the direction of weak exogeneity. 

Rule 2.  In a cointegration group, if A  B and there is no C such that A  C and C  B, then  

A  B.  

Rule 2 says that bivariate weak exogeneity coincides with direct causation, provided that the 

variables are adjacent.  

Rule 3.  A triple of variables forms a collider A  C if i) IC({A, B, C}); ii) {A, B}  C; 

iii) it is not the case that A is a member of a cointegration group Z such that, for any member 

D  Z (excluding A), A  D and {B, D}  C, and mutatis mutandis for B; and iv) it is not 

the case that C is a member of a cointegration group Z such that for any member D  Z 

(excluding C) that D  C. 

Rules 3 says that if two variables are weakly exogenous for a third, they form a triple, 

provided that each of the weakly exogenous variables is adjacent to the third variable 

(established by conditions iii) and iv)).  

 

 4.3. LONG-RUN CAUSAL SEARCH IN A CAUSALLY SUFFICIENT GRAPH 

Davidson (1998, section 3) proposes a search algorithm that identifies every irreducible 

cointegrating set of variables within a CVAR.  He then uses that information where possible to 

identify the cointegrating relations in the  matrix.  This strategy is successful in some cases and 

not others.  There is an analogy with causal search for stationary variables.  Despite the slogan, 

“correlation is not causation,” it is sometimes possible to infer causal direction from tests of 

unconditional dependence.  For example, for a causally sufficient set of three variables with an 

acyclical data-generating process, if A and C are not correlated, but A and B and B and C are 

correlated, then A  B  C is the only consistent causal graph.  In most cases, however, 

unconditional independence is not enough.  Relations of conditional dependence and 

independence provides a richer source of information for inferring the direction, as well as the 

existence of causal edges (see Section 2.2 above).  Davidson’s schema places cointegration in 

something like the role of unconditional independence (or correlation) in the stationary case.   
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 Davidson’s inferential scheme is less informative than it could be, in part, because it fails 

to acknowledge the role of fundamental trends (either explicit or latent) and, in part, because it 

fails to exploit all the available evidence on causal asymmetry.  In addition to Davidson’s 

assessment of the irreducible cointegration for every subset of the variables, complete 

assessment of weak exogeneity among those irreducible cointegrating subsets can function in 

something like the role of conditional independence, when processed according to the three rules 

in the last section and may provide richer, empirically grounded information about the 

identification of the CVAR.  As with causal search in the stationary case, the application of these 

rules will not identify every possible causal graph, but will sometimes be able to partially or 

completely uncover the underlying causal structure. 

 Consider the DGP in Figure 3 and assume that its variables are causally sufficient and all 

(including the fundamental trends) are observed.  We are interested in the logic of causal 

inference rather than the statistical problem of inference, so we also assume that we know the 

correct facts with respect to the cointegration rank and cointegration and weak exogeneity among 

any subset of variables.  (In the language of the causal search literature, we assume that we have 

an oracle.)  Can we use this information to recover the graph of the DGP? 

 The inference problem can be viewed as how to place the zero and non-zero coefficients 

the   and  matrices in equation (25). 

 Given that we know that the cointegration rank is 5, we know that there are two 

fundamental trends.  This implies that  is 7  5 and  5  7.  Since FT1 and FT2 are weakly 

exogenous with respect to all other variables in the system, we may conclude that, even if they 

are not identical with the fundamental trends (which in this case, of course, they are), they at 

least are the unique sources introducing those trends into the system.  And we are entitled to 

enter zeroes in the entire rows of  corresponding to FT1 and FT2.  Without loss of generality, 

we may enter non-zero ij along the main diagonal of the submatrix excluding the FT1- and FT2-

rows of  and zeroes everywhere else.  Similarly, we may enter ones on the main diagonal of the 

submatrix of  that excludes the last two columns. 

 With two fundamental trends, no irreducible cointegrating relation can involve more than 

three variables.  Exhaustive consideration along Davidson’s lines would produce 21 possible 

cointegrating pairs and 35 possible cointegrating triples.  Similarly, we need to consider possible 

weak exogeneity of variables within each irreducibly cointegrating subset.  Most of subsets are 

not irreducibly cointegrating or do not contain weakly exogenous variables, so rather than listing 

all the subsets systematically, we just note the salient ones.  

 From the facts that CI({A, FT1}) and that there are no other variables in this cointegration 

group and that FT1  A, Rule 2 implies FT1  A, which justifies the placement of 16 in row 1 

of  and zeroes in the remaining unassigned places in that row.  Analogous reasoning with 

respect to {C, FT2} implies FT2  C and justifies the placement of 37 and the zeroes in row 3.  

and again with respect to {B, D}, analogous reasoning justifies the placement of 42 and the 

zeroes in row 4.  In addition, in this case, Rule 1 and the fact that B  D imply that not (D  B) 

and justify the zero in row 2, column 4. 

 Rule 3 and the facts that IC({FT1, FT2, B}, that B is not part of a cointegration group with 

either FT1 or FT2, and that {FT1, FT2}  B allows us to identify the collider  



Long-run Causal Order  11 May 2018 

K.D. Hoover 

27 

 

FT1  B  FT2 and justifies the placement of 26 and 27 and the remaining zeroes in row 2 of 

. 

 Rules 3 and the facts that IC({B, C, E}), ({B, C}  E, and not (C  FT2), with which it 

forms a cointegration group, allows us to identify the collider B  E  C and justifies the 

placement of 52 and 53 and the zeroes in row 5 of .  

 With that we were able to recover the entire DGP graph using only the facts of 

cointegration and weak exogeneity. 

 

 

 4.4. LONG-RUN CAUSAL SEARCH IN THE PRESENCE OF LATENT TRENDS 

The CVARs typically estimated in practice most often do not contain variables that are weakly 

exogenous for the whole system, which could, therefore, be identified as the conduit of the 

fundamental trends to the other variables in the system.  It is, therefore, worth considering how 

the principles of search might operate when fundamental trends are latent variables.  It is 

possible to apply the rules of Section 4.2 the variables generated according to equation (25) and 

to treat only the ordinary variables (A, B, C, D, E) as observed and the fundamental trends (FT1 

and FT2) as unobserved.  For some of the causal edges, the reasoning of Section 4.3 is still 

applicable, and we would be able to infer the edges shown in Figure 8:  B  A and B  E  C.  

The remainder of Figure 8 requires further comment. 

 We are unable to infer the edges between FT1, FT2 and A, B, and C for the simple reason 

that the two fundamental trends are not observed and the inference of the edges in which they are 

involved requires their observability.  However, we do know from the fact that the cointegration 

rank is 5 that there are two fundamental trends.  What we cannot say, however, is that those two 

trends enter directly into the observable system.  They may, in fact, be transmitted through 

ordinary variables that are also latent.  We do, know, however, that must enter through A, B, or 

C.  If that were not the case and a fundamental trend entered through D or E, we would not have 

found that CI({B, D}) or {B, C}  E.  This is indicated in Figure 8 by the oval enclosing the 

ordinary variables and the circles (indicating their latency) around the fundamental trends.  The 

arrows running from the latent fundamental trends to the oval, stopping short of the particular 

variables indicates that we know that these variables are caused by these trends, albeit we do not 

exactly what the connections are.  Thus, instead of (25), we can fill in the causally ordered 

CVAR equation with the ambiguous information depicted in Figure 8, where the question marks 

indicate parameters that correspond to possible, but yet to be determined causal edges: 
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Here the two variables, L1 and L2 are latent variable that may either be the underlying 

fundamental trends or ordinary variables that transmit distinct linear combinations of the 

fundamental trends to the system.  In the later case, the covariance between their error terms in  

may be nonzero.   

 Neither the graph nor (29) conveys all the information that we have.  We know, for 

instance, that there are two fundamental trends and that at least one of the fundamental trends 

must be a causal influence on each of A, B, and C.  If that were not so, then the only way that all 

three variables could carry the trends and be irreducibly cointegrated would be for them to form 

a collider group in which one pair is weakly exogenous for the remaining variable.  Given the 

DGP, we know that the weak exogeneity search would not have found that.  Furthermore, we 

know that no two of A, B, and C can have a common latent cause.  If that were not true, that pair 

would form a cointegration group, which the search for cointegrating pairs would not have, in 

fact, discovered.  These two conclusions imply that each of the three observed variables carries 

the fundamental trends in distinct proportions.  These facts place restrictions on how the last two 

columns of the  in (29) can be filled in to be consistent with the DGP. 

 

5.  Conclusion 

In the history of econometrics, the problem of identification and the notion of causal order have 

long been connected – both in the work of Simon and the early Cowles Commission program 

and in the literature on SVARs.  Typically, economists have relied heavily on the idea that a 

priori restrictions derived somehow from economic theory would provide the needed 

identification.  Recent work on graphical causal modeling, however, has shown that there is 

often unexploited information that could provide a firmer, empirical basis for identification.  In 

the case of cross-sectional data or the contemporaneous causal orderings of SVARs, the 

graphical causal modelers have stressed the information contained in conditional independence 

relationship encoded in the probability distribution of the data.  Conditional independence may 

also be a resource in the case of the long-run dynamics of the CVAR, although the fact that 

nonstationary data involves non-standard distributions poses some challenges.  We have suggest 

here that nonstationary data also present the opportunity to take a different approach. 
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 CVARs are nearly decomposable systems in Simon’s sense:  the long-run causal order of 

such systems emerges from complex short-run dynamics to reveal a simpler set of temporally 

aggregated relationships.  Our focus has been on how that emergence happens and what causal 

relationships underwrite it.  The fact that the short-run behavior of the system is largely distinct 

from the longer-run, trend driven behavior gives us a resource, not available for the cases of 

cross-sectional data or the contemporaneous causal order of the SVAR, of, in effect, tracing the 

flows of trends as they combine into new local trends, while, at the same, time preserving their 

essential distinct identities.  Focus on the trends raises questions about the nature of trends.   

 Where do trend come from?  We have argued that, while it is possible for systems of 

equations to generate trend-like behavior on the basis of particular fortuitous parameterizations, 

such “trends” are unlikely to be robust and would require a special economic explanation.  More 

likely trends arise from economic processes that generate variables that display trend behavior 

essentially.  Once a distinction is drawn between ordinary variables (stationary processors) and 

fundamental trends (nonstationary processors), it is clear that a more robust account for 

nonstationary behavior is that it is transmitted from its fundamental sources to variables that 

without these fundamental trends as direct or indirect causes would not naturally be 

nonstationary.  In typical CVAR analysis, econometricians mostly do not find variables that 

themselves can be identified as the source of fundamental trends.  This suggests that, in most 

cases, fundamental trends are latent variables, and any sort of structural or causal analysis of 

CVARs must account for their latency. 

 We suggested – somewhat informally – that combining Davidson’s suggestion of a 

comprehensive search for sets of irreducible cointegrating relations with a similar comprehensive 

search of weak exogeneity among those sets could provide a  non-a priori empirical basis for 

discovering identifying restrictions on cointegrating relations, as well as information on causal 

direction.  We showed that in a simple example, the complete causal graph of the CVAR could 

be recovered.  But, in most cases in the face of latent variables, these restrictions are unlikely to 

provide complete identification.  Nevertheless, as in our illustration, some of the cointegrating 

relations may be identified, even when there are latent trends.  It is also possible that, in some 

cases, it would be possible to recover estimates of the trends using state-space methods (see e.g., 

Johansen and Tabor 2017).  Finally, viewing the CVAR through the lens of latent fundamental 

trends reinforces Juselius’s advocacy of simple-to-general modeling in the CVAR context 

(Juselius 2006, ch. 22, esp. sections 22.2.3 and 22.3).  Cointegrating relations are robust to 

widening the data set to include more variables.  The aim of such widening can be seen as an 

effort to discover the observable variables that are the counterpart of the latent trends in narrower 

data sets. 
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